Phương trình vi phân tuyến tính cấp 1, Bernoulli, Ricatti

Shortlink: http://wp.me/P8gtr-MY

1. Định nghĩa:

Phương trình vi phân tuyến tính cấp 1 là phương trình có dạng:

y' = -p(x).y+q(x)  (1) (hay y'+p(x).y=q(x) )

trong đó p(x), q(x) là những hàm số liên tục, cho trước.

Nếu q(x) ≡ 0, thì (1) được gọi là phương trình vi phân tuyến tính cấp 1 thuần nhất.

Nếu q(x) ≠0, thì (1) được gọi là phương trình vi phân tuyến tính cấp 1 không thuần nhất.

2. Cách giải:

2.1 Cách 1: Phương pháp thừa số tích phân:

Nhân 2 vế của (1) với thừa số e^{\int p(x) \, dx }

Ta được:

y'.e^{\int p(x) \, dx} + p(x).e^{\int p(x) \, dx}.y=q(x)e^{\int p(x) \, dx} (*)

ta chú ý vế trái của phương trình sẽ thấy biểu thức ở vế trái chính là đạo hàm của tích số y.e^{\int p(x) \, dx} . Vậy ta viết lại phương trình (*) như sau:

\left( y.e^{\int p(x) \, dx} \right)^{'} = q(x).e^{\int p(x) \, dx}

Lấy tích phân hai vế ta được:

y.e^{\int p(x) \, dx} = \int q(x).e^{\int p(x) \, dx} \, dx + C .

Vậy nghiệm tổng quát của phương trình (1) có dạng:

y=e^{-{\int p(x) \, dx}}. \left[ \int q(x).e^{\int p(x) \, dx} \, dx + C \right]

Lưu ý: hàm p(x) là hệ số của y trong trường hợp hệ số của y’ bằng 1.

Ví dụ: Giải phương trình y' + 2x.y = 4x

Nhân 2 vế của phương trình với thừa số e^{\int 2x \, dx} = e^{x^2} .

Ta đươc: y'.e^{x^2} + 2xe^{x^2}.y = 4x.e^{x^2}

Hay:

{ \dfrac{d}{dx}} \left( y.e^{x^2} \right) = 4x.e^{x^2}

Lấy tích phân 2 vế ta được:

y.e^{x^2} = 4{\int x.e^{x^2} \, dx} + C = 2e^{x^2} + C

Vậy nghiệm tổng quát của phương trình là: y = 2 + C.e^{-x^2}

2.2 Cách 2: Phương pháp Bernoulli (pp tìm nghiệm dưới dạng tích)

Từ cách thứ nhất, ta nhận thấy nghiệm của phương trình có dạng tích của hai hàm số. Vì vậy, ta sẽ tìm nghiệm của phương trình dưới dạng tích: y = u(x).v(x)

Ta có: y' = u'.v + v'.u

Thế vào phương trình ta có: (u'.v+v'.u)+p(x).(u.v) = q(x)

Hay: (u'+p(x).u)v + v'.u = q(x) (*)

Phương trình (*) có tới 4 thông số chưa biết là u, v, u’ , v’ nên không thể giải tìm u, v bất kỳ. Để tìm u, v thỏa mãn phương trình (*), ta cần chọn u, v sao cho triệt tiêu đi 1 hàm chưa biết.

Muốn vậy, ta chọn u(x) sao cho u' + p(x).u = 0 (**)

Ta dễ dàng tìm được hàm u(x) thỏa (**) vì (**) chính là phương trình tách biến. Khi đó:

{ \dfrac{du}{u}}=-p(x)dx \Rightarrow u(x)=C.e^{- \int p(x) \, dx}

Chọn C = 1 ta có: u(x) = e^{- \int p(x) \, dx}

Như vậy ta tìm được hàm u(x) nên từ (*) ta sẽ có:

v' = { \dfrac{q(x)}{u(x)}} = q(x).e^{\int p(x) \, dx} \Rightarrow v = \int q(x).e^{\int p(x) \, dx} \, dx + C_1

Vậy, nghiệm tổng quát của phương trình (1) là:

y = e^{- \int p(x) \, dx} \left[ \int q(x)e^{\int p(x) \, dx} + C_1 \right]

2.3 Cách 3: Phương pháp Larrange (pp biến thiên hằng số)

Từ cách 2 ta thấy nghiệm phương trình có dạng y = u(x).v(x) với u(x) là nghiệm phương trình (**) – đây là phương trình vi phân tuyến tính thuần nhất cấp 1.

Do vậy, giải phương trình vi phân tuyến tính thuần nhất cấp 1 ta tìm được: u(x) = C.e^{- \int p(x) \, dx}

Mà công thức nghiệm tổng quát của phương trình (1) lại là: y =e^{- \int p(x) \, dx}.v(x) chỉ sai khác so với u(x) ở chỗ thế hằng số  C bằng hàm cần tìm v(x).

Do vậy, ta chỉ cần tìm nghiệm tổng quát của phương trình thuần nhất, sau đó thay hằng số C bằng hàm cần tìm v(x) sẽ giải được bài toán. Vậy:

Bước 1: giải phương trình tuyến tính thuần nhất cấp 1 liên kết với phương trình (1):

y' + p(x).y = 0

Nghiệm tổng quát của phương trình thuần nhất có dạng:

y = C.e^{- \int p(x) \, dx}

Bước 2: nghiệm tổng quát của phương trình tuyến tính không thuần nhất (1) có dạng:

y = v(x).e^{- \int p(x) \, dx}

Ta có: y' = v'.e^{- \int p(x) \, dx} - v.p(x).e^{- \int p(x) \, dx}

Thế vào phương trình ta có:

v'e^{- \int p(x) \, dx} - v.p(x).e^{- \int p(x) \, dx} + p(x).v.e^{- \int p(x) \, dx}= q(x)

Suy ra: v' = q(x).e^{\int p(x) \, dx} . Từ đó tìm được v(x).

Nhận xét:

Trong 3 cách thì cách thứ 3 là cách mà ta không phải nhớ công thức như cách 1 và cách 2. Ngoài ra ở cách 3, trong bước 2 khi thế vào phương trình để tìm hàm v(x), ta luôn luôn khử được những gì liên quan đến v(x) và chỉ còn lại v'(x). Do đó, nếu khi thế vào mà ta không triệt tiêu được v(x) thì nghĩa là hoặc ta thế sai, hoặc ở bước 1 ta đã giải sai. Điều này sẽ giúp các bạn dễ dàng kiểm tra các bước giải của mình và kịp thời phát hiện sai sót.

98 responses to “Phương trình vi phân tuyến tính cấp 1, Bernoulli, Ricatti

  1. Thầy ơi, phương trình vi phân cấp một không giải ra đối với đạo hàm là gì thầy?
    VD:
    a) 4.(y’)^2 – 9x = 0
    b) (y’)^2 – 2.y.y’ = y^2.(e^2x – 1)
    c) x^2.(y’)^2 + 3.x.y.y’ + 2y^2 = 0
    d) y’ = y. (e^x + lnx)

  2. thầy ơi giải giúp em bài này với
    phương trình vi phân bernoulli: xy’ + y = -xy2

    • Em xem phương pháp ở trên và giải thử nhé. Chìa khóa để giải bài này là đặt z = y^{-1}
      Sau khi giải em sẽ có kết quả nghiệm tổng quát (tích phân tổng quát) của pt là: xy(lnx+C) = 1

    • Em có: y' +\dfrac{4x}{x^2+4}y = \dfrac{4}{x^2+4} (*) (pt tuyến tính cấp 1)
      Em có 3 cách để giải, em sử dụng cách giải nào cũng được.
      Ví dụ: pp biến thiên hằng số:
      Giải pt tt thuần nhất: y' + \dfrac{4x}{x^2+4}y = 0
      \Rightarrow \dfrac{dy}{dx} = -\dfrac{4x}{x^2+4}y \Rightarrow \dfrac{dy}{y} = -\dfrac{4x}{x^2+4}
      Suy ra: lny = -2ln(x^2+4) + lnC
      Hay y = \dfrac{C}{(x^2+4)^2} (đây là nghiệm tổng quát của pt tuyến tính thuần nhất (**))
      Khi đó, theo pp biến thiên hằng số em có nghiệm pt(*) có dạng: y = \dfrac{u(x)}{(x^2+4)^2}
      Thế vào (*) em tìm được u(x).

  3. thầy ơi, nhờ thầy giải hộ em bài này: y’=3/y + x

    Bài này là đề thi học kỳ năm ngoái ở trường em,mong thầy giải cho và hướng dẫn những dạng tương tự

  4. Thầy ơi, em không biết em làm đúng không mà ra 1 tích phân em không làm được. Mong thầy chỉ giùm em
    1 – xy = 1/y’

Gửi phản hồi

Mời bạn điền thông tin vào ô dưới đây hoặc kích vào một biểu tượng để đăng nhập:

WordPress.com Logo

Bạn đang bình luận bằng tài khoản WordPress.com Log Out / Thay đổi )

Twitter picture

Bạn đang bình luận bằng tài khoản Twitter Log Out / Thay đổi )

Facebook photo

Bạn đang bình luận bằng tài khoản Facebook Log Out / Thay đổi )

Google+ photo

Bạn đang bình luận bằng tài khoản Google+ Log Out / Thay đổi )

Connecting to %s