Giải phương trình bậc 4 tổng quát

Xét phương trình bậc bốn:

x^{4} + ax^{3} + bx^{2} + cx + d = 0 \qquad (1)

(1) {\Leftrightarrow} {x^{4} + ax^{3} = - bx^{2} - cx - d}

{\Leftrightarrow}{x^{4} + ax^{3} + { \frac{a^{2}x^{2}}{4}}= {({ \frac{a^{2}}{4}}- b)}x^{2} - cx - d}

{\Leftrightarrow}{(x^{2} + { \frac{ax}{2}})^{2} = {({ \frac{a^{2}}{4}}- b)}x^{2}- cx - d} (*)

Ta đưa vào phương trình ẩn phụ y như sau:

Cộng hai vế của phương trình (*) cho (x^{2} + { \frac{ax}{2}}).y + { \frac{y^{2}}{4}} . Ta có:

{(x^{2}+{ \frac{ax}{2}})^{2}+(x^{2}+{ \frac{ax}{2}})y+{ \frac{y^{2}}{4}}= (x^{2}+{ \frac{ax}{2}})y+{ \frac{y^{2}}{4}}+{({ \frac{a^{2}}{4}}-b)}x^{2}-cx-d}

{\Leftrightarrow}{(x^{2}+{ \frac{ax}{2}}+{ \frac{y}{2}})^{2}=(x^{2}+{ \frac{ax}{2}})y+{ \frac{y^{2}}{4}}+{({ \frac{a^{2}}{4}}-b)}x^{2}-cx-d} (**)

Ta tìm giá trị y sao cho vế phải là  biểu thức chính phương (trường hợp vế phải của (*) đã là biểu  thức chính phương thì việc đưa vào biến phụ y là không cần thiết). Muốn vậy, vế phải phải có nghiệm kép theo biến x.

Hay: \Delta = ({ \frac{ay}{2}}-c)^{2} - 4({\frac{a^{2}}{4}}-b+y).({ \frac{y^{2}}{4}}-d) = 0

Nghĩa là, ta tìm y là nghiệm của phương trình:

y^{3} -by^{2}+(ac-4d)y-[d(a^{2}-4b)-dy] = 0 (***)

Với giá trị y_{0} vừa tìm được thì vế phải của (**) có dạng ({\alpha}x+{\beta})^{2}

Do đó, thế y_{0} vào phương trình (**)  ta có:

 {(x^{2}+{ \frac{ax}{2}}+{ \frac{y_{0}}{2}})^{2}}={ ({\alpha}x+{\beta})^{2}} (****)

 Từ (****) ta có được 2 phương trình bậc hai:

{x^{2}+{ \frac{ax}{2}}+{ \frac{y_{0}}{2}}}={ {\alpha}x+{\beta}} (a)

 {x^{2}+{ \frac{ax}{2}}+{ \frac{y_{0}}{2}}}={ -{\alpha}x-{\beta}} (b)

Từ đây, giải 2 phương trình (a), (b) ta sẽ có 4 nghiệm của phương trình bậc 4 tổng quát ban đầu.

P/s: từ phương trình (***) ta sẽ có 3 giá trị y, và với mỗi giá trị y có được ta sẽ có 4 giá trị x. Như vậy, tổng cộng ta có 12 giá trị x là nghiệm của phương trình (1). Tuy nhiên, do (1) là phương trình bậc bốn nên chỉ có đúng 4 nghiệm (thực hoặc phức). Do đó, các giá trị x tương ứng với y0 sẽ phải trùng lại với các giá trị x tương ứng với y1 và y2. Vì vậy, từ (***) ta chỉ cần tìm 1 giá trị yo là đủ.

 

 

24 responses to “Giải phương trình bậc 4 tổng quát

  1. Bạn ơi phương trình tìm nghiệm y nó làm sao ấy ? Phân tích nó không ra phương trình ấy.

Gửi phản hồi

Mời bạn điền thông tin vào ô dưới đây hoặc kích vào một biểu tượng để đăng nhập:

WordPress.com Logo

Bạn đang bình luận bằng tài khoản WordPress.com Log Out / Thay đổi )

Twitter picture

Bạn đang bình luận bằng tài khoản Twitter Log Out / Thay đổi )

Facebook photo

Bạn đang bình luận bằng tài khoản Facebook Log Out / Thay đổi )

Google+ photo

Bạn đang bình luận bằng tài khoản Google+ Log Out / Thay đổi )

Connecting to %s